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Alfvén waves can exhibit a range of bifurcations upon their
interaction with fast ions

Typical scenarios:

fixed frequency and frequency splitting-> frequency is determined by the equilibrium
chirping and avalanches -> frequency is hlghly affected by the fast ions response
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Prediction of character of energetic-particle-driven
transport in tokamaks

What tools can be used to model each type of transport?

Diffusive transport (typical for fixed-frequency modes)

* can be modelled using reduced theories, such as quasilinear

* typical in conventional tokamaks

Convective transport (typical for chirping frequency modes)

* needs to retain full nonlinear features of the wave, is
sustained by nonlinear phase-space structures

* typical in spherical tokamaks
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* development of a criterion for the likelihood of each nonlinear scenario and its

comparison with experiments

e quasilinear diffusion approach and perspectives for whole device modeling



Weak nonlinear dynamics of driven kinetic systems can be used to distinguish
between fixed-frequency and chirping responses

Starting point: kinetic equation plus wave power balance

Assumptions:

*  Perturbative procedure for w, < 9

* Truncation at third order due to closeness to marginal stability

*  Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:
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* If nonlinearity is weak: linear stability, solution saturates at a low level and f merely flattens
(system not allowed to further evolve nonlinearly).

* If solution of cubic equation explodes: system enters a strong nonlinear phase with large
mode amplitude and can be driven unstable (precursor of chirping modes).

Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009



A criterion for chirping onset in tokamaks

Using an action and angle formulation, the previous weak nonlinear
theory leads to

>0: fixed-frequency solution likely
<0: chirping likely to occur

0.1
0 ..... =
-0.17 <—allows steady solution ™
_02} (no chirping allowed)
Phase space integration Resonance surfaces: Int 0'3_ Vetoch
Eigenstructure information: - Boundary at ——x~1.04
g Ql (g/+wP90/n’Pgoau) = —-0.A4f Vdrag
i _ . d do :
q/ (Zder . Ee™wt = nd_f - ZE — Wo 05 (if Vgtoch » Vdrag are constants)
Criterion was incorporated into NOVA-K code: -0.6

. . . . 0 05 1 15 2 25 3
nonlinear prediction from linear physics elements

Vstoch /Vdrag

The criterion predicts that micro-turbulence should be key in determining the

likely nonlinear character of a mode, e.g., fixed-frequency or chirping




Correlation between chirping onset and a marked reduction
of the turbulent activity in DIII-D
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The thermal ion
heat conductivity
is used as a proxy
for the fast ion
anomalous
transport
experiments in
DIII-D are
scheduled to
further test the
proposed criterion



Correlation between chirping onset and a marked reduction
of the turbulent activity in NSTX
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Chirping is ubiquitous in NSTX but rare in DIII-D, which is consistent with the inferred fast ion micro-turbulent levels



Criterion evaluation

chirping, NSTX fixed-frequencies, DIlI-D and TFTR
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Nonlinear chirping vs Quasilinear approach

* Requires particles to remember |+ Requires particles to forget their phase (via
their phases from one trapping collisions, turbulence or mode overlap);
bounce to another; * Assumes that the modes remain linear

(therefore NOVA is suited) while the

e Full kinetic approach necessary; distribution function is allowed to slowly

evolve nonlinearly in time;

* Entropy is conserved in the e Entropy increases due to particle memory
absence of collisions. loss.

The chirping criterion is a useful tool to make sure the quasilinear approach is
applicable for a given mode



Resonance-broadened quasilinear (RBQ) diffusion model?

o : . Broadened delta
Formulation in action and angle variables?3

* Diffusion equation: function
af 0 0 2,2 T L“) *
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* Mode amplitude evolution: 9 ) ) eigenstucture
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& : unperturbed (kinetic) energy; P(p : canonical toroidal momentum

Broadening is the platform that allows for momentum and energy exchange between

particles and waves:

A = AWy n +0b |f)/n| + CVscatt
1Berk, Breizman, Fitzpatrick, NF 1995.
2Kaufman PoF 1972.
3Duarte, Gorelenkov and Berk, 2017 (unpublished).



Parametric dependencies of a broadened resonance

old idea (Dupree PoF 1966): the turbulent spectrum

w

contributes to diffuse particles away from their original

unperturbed trajectories C>

broadening specification: A$) = awyp,, + b | V0| + Vscart o

analytical predictions for the simplified driven, bump-on-tail

C >
system close to and far from marginal stability lead to [ Q
particular choices of coefficients a, b and c.

guiding-center code ORBIT is being used to verify the -0z -0.1 P°f°3 -0.06  -0.04
resonance width scaling for realistic mode structure and o
resonances calculated by NOVA.



Resonance Broadened Quasilinear (RBQ) code computation of fast ion relaxation

Upper plot: distribution function as a function of the canonical toroidal momentum
Lower plot: evolution of the nonlinear bounce frequency (~square root of mode amplitude)
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When modes overlap, there is a sudden release of stored fast ion energy, which lead to substantial mode growth



DIII-D discharge 153072

Example

Resonance broadening for a given value of i

Mode structure

e

/
g

_\E

0.8

I

6

10
|
|

\ .
Z
;_T._\_.

0.6
1/2




Resonance Broadened Quasilinear (RBQ) code is being interfaced with TRANSP

Whole device modeling using TRANSP is interfaced PDFs are used actively in Kick
with RBQ via a Probability Distribution Function (PDF) modeling?
E=82keV
| | | 140 T levies ~— RBQcanself-
vol 12 0.00 4 consistently provide:
i ] *  mode amplitude
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<« 57 space location
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Outcome

Criterion gives confidence in the application of quasilinear modeling;
Refinement of the fast ion diffusivity that enters the chirping criterion is
being done with the gyrokinetic code GTS;

Experiments on DIII-D to further test the proposed chirping criterion
predictions;

Although a reduced model, RBQ provides a platform for rich dynamics seen
in experiments: it resolves velocity space and account for losses and
intermittency;

Whole device modeling, RBQ interfacing with TRANSP.
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